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AN ORTHOTROPIC LAMINATE COMPOSITE

CONTAINING A LAYER WITH A CRACK

K. ARIN

Lehigh University, Bethlehem, Pennsylvania, 18015, U.S.A.

ABSTRACT

A laminate composite containing an orthotropic layer with a

crack situated normal to the interfaces, and bonded to two ortho-

tropic half-planes of dissimilar materials, is considered. The

solutions for two different classes of orthotropic materials are

presented separately. In each case, the problem is first reduced

to a system of dual integral equations, then to a singular integral

equation which is subsequently solved numerically for the stress

intensity factors at the tip of the crack. The effect of the

material properties on the stress intensity factor is investigated.

Two cases, the generalized plane stress and the plane strain, are

treated simultaneously.
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1. INTRODUCTION

The increased use of composites can probably be attributed to

the fact that they are a group of structural elements which opti-

mize the requirements of safety and economy. As a result, this

has prompted the solution to many problems involving various com-

posite geometries [1] - [4], [10], [13] - [17]. One particular

composite geometry of practical importance is the multi-layered

isotropic medium consisting of many layers, including the presence

of possible flaws. This problem has been treated by Hilton and

Sih [1) by simplifying the geometry to the form of a single layer,

with an internal crack normal to the interfaces, bonded to two

dissimilar half-planes with averaged elastic properties. Through

the application of an integral transform technique, a Fredholm

integral equation is obtained and solved to obtain the crack tip

stress field. Recently, the same problem has also been considered

by Bogy [4]. Furthermore, the case of a crack touching the inter-

faces has been investigated by Ashbaugh [2] and Gupta [3], where

the stress state around the crack tip has been found by the method

of integral transforms, the singularity having been shown to be

different than 1/2.

In this paper, the solution of the problem treated by Hilton

and Sih will be extended to the case of orthotropic materials.

Since the orthotropic materials can be classified in two groups,

there are four possible material combinations. Two cases, where

the layer and the matrix are both of the same material type, are

formulated, and the corresponding solutions are presented. The
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solutions to the other two combinations can be obtained in an

identical manner. In each case, the problem is formulated in

terms of integral transforms, using the procedure described by

Sneddon [5]. The dual integral equations resulting from the mixed

boundary conditions are solved by reducing them to a singular

integral equation, and then employing the numerical technique

described in [7]. For certain choices of material parameters,

the effect of crack size on the stress intensity factor is shown

in Figures 2- 6.
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2. GENERAL FORMULAS

For an anisotropic elastic body the equilibrium equations, the

stress-strain and the strain-displacement relations in the absence

of body forces are:

x + xy + xz 0+ + -
ax 3y 9z

__ + Y + Yz = 0
ax Dy 3z

xz + yz z 0 (2.1)
ax ay az

x x

y y

S [ z i,j = 1,6

YA . = A...
yz yz i3 31

xz xz

Txy xy (2.2)

Du 9v 3w
Ex xE:t ' y 'z z

9v aw aw au _u av
Yyz I +-z + 'Yxy 2= +  a- (2.3)
yz tz y xz 3x z 9y x

Substitution from (2.3) into (2.2) and (2.1) yields the equilibrium

equations in terms of the displacements:
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A 2 u +u + A 2 + A 2 +A4

11A 2 + A66 - + A55 z2  16 2 26  2 + 45  2

+ A +A 3WA + 2A ___ + 2A

2 2

1A5 2+A46 2 + A35 2 + 2A16 Txy + 2A15 xz

32 u _2v 2v
+ 2A 5 6  Syz + (A6 6 +A 1 2 ) -xy + (A56+ AI 4) 3xz

2v 
2w A 2w

+ (A46 +A25)-a9 + (AI 4 + A56)7-x + (A1 3+A55 ) -z

+ (A3 6 +A 4 5) z 0

A 2u +A 2u + A2u  2v + A2v  2v

16 + 26 +2 45 2 66 a + A22 + A44 2
Axz 2  x 2 y

2w 2w  2w )2u
+ A 2 + A2 4  2 + A34 + (A6 6 + A1 2 x

5 (A24 A)34 22 6ax
+ x y 2 z

2  2 2 2
82u A u 82v

+ (A56 +A4) xz + (A25 + A46)Tyz + 2A26 3x~ y

+ 2Av- + 2A + (A25+A46 + (A45+A )
46 axaz 24 ayaz 25 46axay 4 5  36 axaz

28 w
+ (A2 3 + A4 4 ) yazw

2 u  2u 2u v  
2v v

+ A46 5 2 + -56 + A 2 4  2 + A34

2 2 22
+ A w + A + A + (A +A56 2u

55 x2  44 y2 33 3z2  1 4 5 6 axay

+ (A5 5 +A 3 ) + (A36+ A45 )y + (A25+ A46 2

22
+2(A+ v + (A4 + A23+ 2A 32w + 2A 2w

36+ A45 xz 44 23-yaz 45 axay 35 3xaz

+ 2A 0 (2.4)
+ 2A34 yaz
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Defining the inverse of the matrix [Aij] by

[a] = [A] -1  (2.5)

and noting that for orthotropic materials

1 yzx 0 0
E Ey E
x y z

v v
xy 1 - 0 0 0E E E
x y

v v

[a] = x y z
1

0 0 0 0 0
yz

10 0 0 0 0
xz

1
0 0 0 0 0

xy

E v = E y v Ev = E v
Exyx Eyxy yVzy = Ezy z  Ez = xzx

Al A2 A3 0 0 0
11 12 13

A12 A2 2 A 23  0 0 0

A A23 A3 0 0 0
13 A23  A 33[A] =
0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A6 666 1(2.6)

Equilibrium equations (2.4) in the case of orthotropy are further

simplified to give (see [6]):
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2u  32u 32u a au
+Au

44 2 66 2 55 2  x [(A11 -A 4 4) x
Ax ay z2

av aw
+ (A 1 2 +A 6 6 )a + (A 1 3 +A 5 5) -i] = 0

2v  2v a2v  a au
A -+A +A D
66 a 2  55 ay2 44 2 y [(AI 2 +A 6 6  x

A3x y az

av aw
+ (A 2 2 -A 5 5 ) + (A 2 3 +A 4 4 )-] = 0

a2  2 w 2w a au
55 2 44 y A66 2  az [(A3+A55 x

Ax Sy 8z

av aw
+ (A23 +A44) + (A3 3 -A 6 6)-] = 0 (2.7)

which reduce to the Navier's equations for isotropic materials.

Since the problem under consideration is one of the plane

theory of elasticity, the formulas of the plane strain and the

generalized plane stress will be given below.

2.1 Plane Strain

From the conditions of plane strain, i.e.,

w = 0 , u = u(x,y) , v = v(x,y) (2.8)

and (2.3) we have

au av au av
x  ax ' y ' xy ay x

z = yz Yxz = 0 (2.9)

Furthermore from (2.2) we conclude that for the bodies possessing

at least one plane of elastic symmetry (the plane perpendicular to

z-axis)

T = T = 0 (2.10)
xz yz

7



and the first two equations of (2.4) can be solved to give the

displacements u,v, the third being automatically satisfied.

In particular, for orthotropic bodies we have

2 2 292u 2u vAll 2 + A66 2 + (AI2+A66 ) = 0
+A + (A1 2 + A 6 6) -=0

2 2 2
A v  2 v 2u (2.11)A66 - 2 + A22 y2 + (A1 2 + A6 6 ) x = 0 (2.11)

Sx = Allx + A y12y

y = A 1 2 x + A22Cy

xy A66xy

z = A13 x + A23Ey

T = T = 0 (2.12)
yz xz

2.2 Generalized Plane Stress

Assuming (see [121)

a = T = T = 0 (2.13)
z xz yz

from (2.2), for the average stresses and strains we can write

Ey = [a] a

xy L xy (2.14)

where

all a12 a16 A11 A1 2 A1 3

a 12 a22 a 2 6 |, [1] [A 22 22= 2 = A2 A22 23

al6 a26 a 6 6  A A2 3 A3 3_
(2.15)
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Substitution from (2.3), (2.13) and (2.14) into (2.1) yields

Su 2u  au 2v  - 2v

11 x2 332 13 xy 1 3 ax2  23 2

- .a v
+ (A 3 3 +AI 2 a =) 0

2 2  2 2u - a2 v 2
A u (A u 2 u v +2A

13 8x2 12 33 axay 23 2 33 2 + 223 axay

+ 2 v - 0 (2.16)+ 22  2
ay

For orthotropic bodies we have

1 0 1 y
E E E A E A
x y Y Y

v v

xy 1 x
E 0 E .A E -A

x y x x

0 0 1/Gxy 0 0 Gxy

A (1 -v v ) (2.17)
E y xy yx

and (2.16) reduces to

a2u a2u - a2v
All + x- + A33 -2 + (A3 3 +A 1 2)~xy

11 2 33 2 2 uxy

2 2 2

33 2  22 y2 + (A 33 = 0 (2.18)
ax 2 y

Hence for the orthotropic materials equations (2.11) and (2.18) can

be expressed as

a2u + au a2v
- + + - 01 2 2 3 axay

2 2 2u
+ + 8 - 0 (2.19)

2 2 y 2 3 axay
ax ay
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where

All  A2 2  1 + A- 2  for plane strain

1 A66 66 A 66

All 22 = 1 +12 for generalized

33 A33  A33  plane stress (2.20)

3. FORMULATION OF THE PROBLEM

A single layer of width 2h is assumed to be bonded to two half-

planes of dissimilar materials. Both the layer and the matrix are

considered orthotropic. A crack of length 2a is symmetrically

located being normal to the interfaces (see Figure 1). The case

a< h will be studied. The case a= h is given in [10]. The crack

surface loading consists of normal stresses distributed symmetri-

cally. The solution of the skew-symmetric case can be obtained

similarly. A superscript * for the elastic constants will refer to

the matrix.

The approach described in [5] will be used. First, we will

obtain the solutions of (2.19) satisfying certain boundary condi-

tions of the layer and the matrix. The combination of these solu-

tions will be forced to satisfy the rest of the boundary conditions.

3.1 Solutions uo(x,y), vo(x,y)

Assume

u (x,y) 2 f f(t,x) cos tydt
0 r

0
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v (Xy) = f f(t,x) sin tydt (3.1)
0

Substitution from (3.1) into (2.19) gives

S2f t2f + ft o1 2 3 x

--2 82f o 3 t -= 0 (3.2)
ax

which can be solved to give
Sltx -sltx s2tx -s2tx

f(t,x) = A(t)etx + B(t)e + C(t)e + D(t)e

s tx -sltx
fo(t,x) = 87[A(t)e

1  - B(t)e 1

s 2 tx -s 2 tx
+ 88 [C(t)e - D(t)e ] (3.3)

where

= 8 = =1  43 1 2 - 2 2
4 1 i ' 6 4 5

and sl and s2 are the roots of

s4 + 4s2 5 = 0

Hence

sl = 1 + i2 =  (-4 +6)/2

s2 = 3 + i4 =  4 -6)/2

1 - B1S 1 - 81s288 = (3.4)
7 3s1 8 3s2

Hence u (x,y) and v (x,y) are determined in terms of unknown func-

tions A(t), B(t), C(t), D(t). Note that B's here correspond to the

layer.
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3.2 Solutions u 2 (x,y)., v 2 (x,y)

Assume

u2 (x,y) = fl(t,x) cos tydt
u 2 (x, y)

0

v2 (x,y) = f 2 (t,x) sintydt (3.5)v 2 (xy)
o

Then the solution will be identical to u (x,y), v (x,y) except B's

will be replaced by 's to refer to the matrix. Hence,

fl(t,x) = K(t)etx + L(t)e tx + M(t)e 2tx + N(t)e-s
2 tx

, sltx -s tx

f 2 (t,x) = 87[K(t)e - L(t)e 1

+ s2[M tx -s 2 tx (3.6)
+ 88[M(t)e - N(t)e ]

3.3 Solutions u3 (x,y), v3 (x,y)

Assume

u3 (x,y) = 2 f 3 (t,y) sin txdtu 3 (x,y) =
o

v 3 (x,y) = 2 f 4 (t,y) cos txdt (3.7)
0

Substitution from (3.7) into (2.19) yields

2
3 4 2
y2 3 ay 3 = 0

24 3
2 2 f 3 y f4 t = 0 (3.8)
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Solving (3.8) we obtain

slty/ 5  -sltY/ 5f 3 (t,y) = E(t)e + F(t)e

s2ty// -s2ty/ / s
+ G(t)e + H(t)e

s lt Y / --s l t y//
f 4 (t,y) = [E(t)e 1  - F(t)e -

s2tY// 5  -s2tY/f 5
+ [1 0 G(t)e - H(t)e (3.9)

where

9 = L+
9 3 1 /

=1 1 5 2 (3.10)
10 83 s2 5

and the other constants are as in u0 (x,y) and v (x,y).

3.4 Stress and the displacement fields of the laminate composite

The displacements of the layer and the matrix will be expressed

as

ul(x,y) = uo(x,y) + u3 (x,y)

Vl(X,y ) = v (X,y ) + v 3 (x,y) for the layer, and

u 2 (x,y), v 2 (x,y) for the matrix (3.11)

From the symmetry conditions we have

B(t) = -A(t) , D(t) = -C(t)

Furthermore from the condition that u3 (x,y) and v3 (x,y) will
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tend to zero as y-*+, the unknowns G(t) and F(t) are eliminated.

Also, the condition that u2 (x,y) and v2 (x,y) go to zero as x -

will be used to eliminate K(t), M(t).

The stress field is obtained from (2.14) and (2.17) for the

case of generalized plane stress. Stress field for the plane

strain may simply be obtained by substituting A12/A11 , A1 2/A2 2,

1/All and 1/A22 in place of vyx Vxy, (E y.A) and (Ex*A) in the

stress expressions.

In Appendix A, it is shown that sl and s2 are either 
real or

complex conjugates. Accordingly, the expressions below are given

for two different types of orthotropic materials. Hence, after

intermediate manipulations we have,

For Material Type I

ul (x,y) = u + u3

= 4 [A(t)sinh(witx) + C(t)sinh(w3tx) ]cos tydt

00 - allty//-,,5 -31 ty/F5
2 f [E(t)e + H(t)e ] sintxdt

o

vl(x,y) = v + v3

= f [A(t) 37cosh(w tx) + C(t) 8cosh(w 3 tx)]sin tydt

2 0 -Iwllty" 5
- f -[sign(w l)9E(t)e

+ sign(w3) 1 0H(t)e 3  ] cos tx dt

-J lltx -Iw3Itx
u2 (x,) = [L(t)e + N(t)e ]cos ty dt
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2 o* ,l tx
v2 (x,y) =- [sign(wl) 7L (t )e

0

-w 3ltx
+ sign(w3)88N(t)e ] sin ty dt (3.12)

and the stresses

i(1 - v v)

2E oxl (x y ) =x

o -ltY/ 5  -m3tY/ 5
f [ylE(t)e + Y2H(t)e ] costxtdt
0O

+ f [2y 3A(t)cosh(wltx) + 2y4C(t)cosh(w 3tx)] cos tytdt
o

(1 - V ) V (xy)

2Exy Y yl ) =
y

00 -lllty//F 5  -3ty/ 5

f [y5E(t)e + Y6H(t)e ] cos tx tdt
O

+ j [2y 7A(t)cosh(w1 tx) + 2ysC(t)cosh(w 3tx) ] cos tytdt
o

2Gxy -xyl (x,y) =2G xyl
xy

I [2y 9A(t)sinh(w1 tx) + 2y10C(t)sinh(w 3tx) ] sin ty tdt
0

co -wI 5 -v 3  5
+ f [yllE(t)e + Y12H(t)e ] sin txtdt

i(l - v vxy yx (xy)* ax2(x,y) =
2E

x

o , -mltX , -w3 tx
f [yl3L(t)e + y14N(t)e i costy tdt
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rr(1 - v vxy yx
2* ay2(x,y)

2E
y

. -lltX * -I I3tx
f [Y1 5 L(t)e + Y1 6N(t)e i cos tytdt
0

2G* Txy 2 (x,y) =

xy
* *

0 -W lltx -I3 I t x

J [y 9 L(t)e + y 1 0N(t)e ] sin tytdt (3.13)
0

For Material Type II

ul(x,y) = uo + u 3

o4 IA(t)cos(w
2 tx)sinh(w tx)

+ C(t)sin(w 2 tx)cosh(wltx) ]cos ty dt

2 2ty  2ty  -l5ltY/ 5
+ f [E(t)cos---- + H(t)sin-- ]e sin tx dt

5 5

vl(X,y) = v o + v 3

o- {A(t) Ii 7cos(L 2tx)cosh(wltx) - sin(w tx)sinh(w tx)]

+ C(t) [ 7cos(w 2tx)cosh(w1 tx)

+ B7sin(w 2 tx) sinh(wltx)]} sin tydt

00 ti2ty , 2tY
2 f{E(t)[- 9 sign(w)cos--- sin -  ]

+o 0 9

,, 2ty ,2ty -allty/ 5
+H(t) [ 9cos---- 9sign(wl)sin-I t y ] }e cos txdt

5 16
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00 , -I~Wj tx
u2 (x,y) = 2 f[K(t)cos(w2tx) + M(t)sin(w2tx)]e cos ty dt

o

2 , 2 2

v2 (x,y) = fIK(t)[- 87 sign(wl)cos( 2 tx) _ 87 sin(w 2tx)]
2 (y 7 2 7

0

+ M(t) [87 cos( 2 tx)

,, * -Il Itx
87 sign(wl)sin(w2tx)]}e sin tydt (3.14)

and the stresses

r(1 - v vxy yx
2Ex axl(x,y) =

x

co

f {2A(t) [-A2sin(w 2tx)sinh(w tx) + Alcos(w tx)cosh(w tx)]
0

+ 2C(t) [Alsin(w 2 tx)sinh(w1 tx)

+ A 2cos(w 2 tx)cosh(wltx)]}cos tytdt

0 w2 ty w 2tY
+ f[E(t)(A 3 cos- + A4sin

5 5

w2ty w2ty -I~llty/ 5

+ H(t)(-A 4cos-- + A sin---- )]e cos txtdt

5 5

(1 - v v)

2Ey Y yl

0o

f {2A(t)[-A sin(w 2tx)sinh(w 1tx) + A5cos(w 2tx)cosh(A1 tx)]
0

+ 2C(t) [A5 sin(w tx)sinh(w1 tx)

+ A6cos(w 2tx)cosh(w1tx) ]cos ty tdt

w 2 ty w2ty
+ f [E(t) (A7cos- + A 8sin )

+ H(t)(-A cos-- + A sin-- )]e cos txtdt
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2Gxy xyl
xy

f {2A(t) [A9 cos(w 2 tx)sinh(witx) - Al0sin( 2 tx)cosh(ltx)]
o

+ 2C(t) [A 9 sin(w2 tx)cosh( 1 tx)

+ Al 0 cos( 2 tx)sinh(ltX)]} sin tytdt

Sw2ty w2ty

+ f [E(t)(-A 1 1 sin - + A 2os- )
o 12

5 5
w 2ty w2 tY -lwity//5

+ H(t)(A C1 cos-+ A sin-- )]e sin tx tdt

11 5 12 V5

71(1 - v vxy yx
* ox2(x,y)

2E
x

f {-K(t) [A2 sin(w tx) + Al 3 cos(w tx)]
o

S, . -i l tx
+ M(t) [A 2 cos(m2 tx) - A 3 sin(w2 tx)]}e costy tdt

(1 - v vyx)
xy y2(x,y)

2E

f {-K(t)[A 6 sin(i 2tx) + A1 4cos(w 2 tx)I

-I l tx
+ M(t)[A6 cos(w 2 tx) - Al4sin(w 2 tx)]}e cos tytdt

2G Txy2(x,y) =

2G T 2xy

f {K(t) [A9 cos(w 2 tx) + A1 5 sin(w 2 tx)]

** -Iwlitx

+ M(t) [A 9 sin(w2 tx) - Al5cos(w tx)]}e sin tytdt

(3.15)
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where A(t), C(t), E(t), H(t), K(t), M(t) stand for the combinations

of the previous unknowns.

The bielastic constants A.i and yi are given in Appendix B.

Hence, there are four possible material combinations for the

laminate composite. However, we will obtain the solutions for two

cases where the matrix and the layer both are either of material

type I or II. The other two combinations can be derived in an

identical manner.

The boundary conditions of the problem may be summarized as

follows.

At x = h

ul(h,y) = u2 (h,y) ; vl(h,y) = v2 (h,y)

rxl(h,y) = ax2(h,y) ; Txyl(h,y) = Txy 2 (h , y ) (3.16)

At y = 0

Txyl(X,O) = 0 , Ix <h; Txy 2 (X'O) = 0 , x >h

v2 (x,0) = 0 , xl >h (3.17)

yl(x,0O) = -p(x) , Ixl< a; vl(x,0) = 0 , a < xl <h (3.18)

At x = 0

ul(0,y) = Txyl(0,y) = 0 (3.19)
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4. THE DERIVATION OF THE INTEGRAL EQUATION AND THE SOLUTION

4.1 For Material Type I

The stress and the displacement fields given by (3.12) and

(3.13) automatically satisfy the boundary conditions (3.17) if we

choose

H(t) = 1 E(t) (4.1)
12

On the other hand the mixed conditions (3.18) give

r(1 - v v( - xy yx) x0
2 E Yyly

-jm -ltY//5 Y11 -Iw3ltY/"/5
lim f E(t)( 5 e - 6 e )cos txtdt

yO 0 o12
Co

+ f [2y 7A(t)cosh(wotx) + 2y 8C(t)cosh(w3tx)]tdt
0

7(1 - v v )
= -xy yx p(x) , Ix < a

y

v1 (x,) = - 19 E(t)cos txdt =0 , a< xI<h (4.2)

To obtain the proper singularity, we will follow the procedure

described in [13] and [14], and define a new unknown function by

V1 (xO) 12 yj E(t)sin txtdt =  (x) (4.3)
o

such that

(x) = 0 , Ix >a

and finally invert (4.3) to get

a
y19tE(t) = (x)sintxdx (4.4)
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Substituting from (4.4) into the first equation of (4.2) one

arrives at the singular integra.1 equation. This will be done by

making use of the integrals given in Appendix C. Hence,

a oo

Y20 (t)dt + f [2y 7A(t)cosh(wltx) + 2y 8C(t)cosh ( 3 tx) ]tdt
-a o

(l - v v)
= -2Ex p(x) Ix < a (4.5)

Y

where the definition of 0(t) has been extended into the (-a,0)

range as an odd function. The single-valuedness of the displace-

ments can then be expressed as

a
f 0(t)dt = 0 (4.6)

-a

The next step is to determine A(t) and C(t) from the equations

(3.16). From (3.16), (3.12) and (3.13) after some manipulations

and an inversion we obtain

-2A(t)sinh(w 1 th) - 2C(t)sinh(w3 th)

-lWl th -W th
+ L(t)e + N(t)e

= T f cos tydt f E(C)[e
o o

- - e ]sin EhdE
Y12

- 2 E()sin hd( 2 (/y )  t 2
o (w /) + t 2 12 (w2 2 5 2

SR 1 (t)
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2A(t) 7 cosh(w1 th) + 2C(t) 8 cosh(w 3 th)

-01 th - 03 I t h

+ sign(Al) 8 7 L ( t )e + sign(w3 ) 8 8N(t)e

2 0 - lly/ p 5
= sin tydy f E(C) [sign(w1 ) 8 9 e

o o

711 -i 3 y/sign(b 3 ) B1 0e  ] cos EhdE
712

2 j E(E)cos Ehdg[sign(wl) 9  2 2 2
o (w2 /25) + t

t
11 sign( 3) 10  2 = R2(t)

Y12 (w 3 / 5) + 2123 5

[-2y 3A(t)cosh(w1 th) - 2y 4 C(t)cosh(w3th)

-l Ith , -I 3 th
+ 7 1 7 Y1 3 L(t)e + 7 1 7 Y1 4 N(t) e  t

2 0- 00 W, Ey 5
= f cos tydy f E() [ 1 e

o 0

Yll e ] cos Ch dE
2 712

2 _ _ l I _ 5
- j E(E)cos h [d" l 2 2 2

0 (w2 /5) + t5

711 1 3T 5
- 22= tR3(t)

2 12 ( /2 5) + t 2
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[-2y 9A(t)sinh(wlth) - 2yl 0C(t)sinh(w3 th)

-Iw*1 th , -I3 th it
+ Y1 8 Y9 L(t)e + Y1 8 Y1 0 N(t)e

= 2 f sin tydy f E(E)yll[e e 5

o o

- e ] sin Eh EdE

2yll t t
- f E(E)sin Eh Ed[ 22 2 2 2

o (w2 /a5) + t (w3 /t5)

= tR 4 (t) (4.7)

Functions Ri(t) can be obtained in terms of (t) by substitut-

ing from (4.4) into (4.7) and using the integrals given in Appendix

C. Hence after lengthy manipulations,

i a -(h-n)t /5/1 1il
R1 (t) [e

2y 1 9t -a

Y11 -(h-n)t 5/.w31
- e ] (n)dn

12

1 a -(h-n)t/ a5/ 1IS 2y f [sign(wl  ) 9e

2 1 9 t -a

11 - (h- ) t/ 1l ( 31
sign( 3 ) 1 0e  ] ()dn

Y12

_ 5 a yl -(h-n)t/IlI
R 3 (t) = 2y1 9 t [ e

-a IW11

11  y2  -(h-n)t/5/1w3e ] (n)dn
Y12 1w31
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yll 5 a 1 -(h-r)tv /IS ll
R4 (t) = 2yt f [  e

2 -19 -a i

1 e (h ) 5/ 3 ())dr (4.8)

w3

Solving (4.7) for A(t) and C(t) and substituting into (4.5)

gives the following singular integral equation.

a t)dt a (1 -vv
1 I(t)dt + f k(x,t) (t)dt - xy yx p(x) ,
-a -a 2Y20Ey

xl < a (4.9)

subject to

a
f (t)dt = 0 (4.10)

-a

where

1 -(h-t)n /lwll
k(x,t) = [kl(x,n)e

TY20 o

- (h-t) n/ Bw 3/I

+ k2 (x,)e (h-t) d

kl(x,) = 2yl9f(T) [ 7 f 5 6(,n)f7  + Yf 6(x,n)f 8 ()]

k 2 (x,n) = 2y 1 9 f(n) [Y7 f 5 (x, ' )f 9 (n) + y 8 f 6 (x,n)fl 0 (i)] (4.11)

and

f(0) = f 3 (I)fl() - f2(n)f 4(n)

fl ( n ) = Y25 + Y2 4 tanh(w3 nh)

f2 ( ) = Y29 + Y2 8 tanh( 3 h)

f 3 (n) = Y27 + Y2 6 tanh(wl n h)
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f4 (n ) = Y23 + Y2 4tanh(lnh)

f5 (n,x) = cosh(w1ix)/cosh(wl h)

f6 (T ,x) = c'sh(W3nx)/cosh(w3Dh)

f7 (n) = Y38 \ Y3 9 tanh(w 3nh)

f8(n) = Y40 + Y4 1 tanh(w 1 h)

f9 (n) = Y42 + Y43tanh(w 3ih)

fl1 0 (n
)  Y44 + Y4 5tanh(w1lh) (4.12)

Changing the variables

t = aT , x = aX and

4(t) = o (T) , p(x) = PO(X)

ko(X,T) = ak(x,t)

(1 - v v)
g(x) = XY YX POX) (4.13)

we obtain

1 ([) 1
1 - dT + f k (X,T)O (T)dT = g(X) , X <1
T-1 T-X -1 o 0

1
[ pO(T)dT = 0 (4.14)

-1

The solution with the proper singularities will be sought in

the form

F(T) (4.15)

where F(T) is Holder continuous in the interval -1 <T < 1.

Hence following the procedure described in [71 we arrive at
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N F(T.)

S N + ko (XiTj)] = g9(X) , i = 1...,N-1
k=1 -

N
I F(T 9 ) = 0 (4.16)

k=l N

where

3 = cos2N (2j-1) , j =1,...,N

= cos , i =1,...,N- (4.17)
Xi N

From (4.16) N unknowns F(T.), j =1,...,N can be solved.

4.2 For Material Type II

Choosing

A 1 2 E
H(t) = - E(t) (4.18)

11

we see that the expressions (3.14) and (3.15) for the stress and

the displacement fields automatically satisfy the boundary condi-

tions (3.17).

The mixed conditions (3.18) give

i xy - dxyyx) O
2Ey yl (x,0) =

f {2A(t) [-A 6 sin( 2tx)sinh(w 1 tx) + A5 cos( 2tx)cosh(wltx)]
O

+ 2C(t) [A5 sin(w 2 tx)sinh(w1 tx) + A 6 cos( 2 tx)cosh(wtx)]}tdt

0 w2 ty w2ty
+ lim f E(t)[(A7 cos-- + A8 sin- )

y0O o 5'W

A1 2  W2 ty w2 ty - lllty// 5
(-A 8 cos-- + A7 sin-- )]e cos txtdt

11 / 5
(l - v v)

2Exy yx p(x) , I <a
y
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v1 (x,0) = 1 6 f E(t)cos txdt = 0 , a < x <h (4.19)

0

Now, in a similar way, we will define the new unknown by

l(x,0) A16 E(t) sin txtdt = (x) (4.20)
ax 7T 16

such that (x) = 0 for Ixl > a.

Inverting (4.20) we obtain

a
-A16tE(t) = f (x)sin txdx (4.21)

Substitution from (4.21) into the first equation of (4.19)

yields

a 0

A2 7  t 4(t)dt + J {2A(t)[-A6sin(w 2tx)sinh(wltx)
-a o

+ A5cos(w 2tx)cosh(w tx)]

+ 2C(t) [A5 sin(w 2tx)sinh(w tx) + A6cos(W 2 tx)cosh(wltx)
] }tdt

i - xyv vyx
2Exy yx p(x) , x < a (4.22)
2E
y

where the extension of the definition of c(t) into the (-a,0) range

requires the single-valuedness of the displacements, 
i.e.,

af (t)dt 
(4.23)

-a

A(t) and C(t) are determined from (3.16).

From (3.16), (3.14) and (3.15) after some manipulations and

an inversion we have
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-2A(t)cos(w 2 th)sinh(w 1 th) - 2C(t)sin(w th)cosh(w th)

-I iIth  . - Jl1th

+ K(t)cos(w 2th)e + M(t)sin(w2th)e

28 12 t 28 12 t

= f E(M)sin hd 25 + 2 2 i (t)
o l 2 2 W1  2 2

0 ( + t) + ( t)
-5 T 5 J55 5

-2A(t) [7cos(w th)cosh(w th) - 8 7 sin(w th)sinh(with)]

- 2C(t) [87 cos(w th)cosh(w th) + [7sin(w2 th)sinh(w th)]

+ K(t)[-87 sign(w )cos(w 2 th) - 7 sin(w th)]e

.n . * * . -Il th -

+ M(t) [7 cos(w 2 th) - 7 sign(*l)sin(w2th)] e

A3 3  + A6t 3 3 E + A1 6t
v,& 16

1 c E(V)COS hd 225 + ,5 = H2
7T f E (E) cos Eh25 2 225 22 2

0 w 2 2 2 2 I + 2E 2
+ ( + t) + (t)

- 5 5

j-2A(t) [-A2 sin(w th)sinh(With) + Alcos(w th)cosh(w th)]

- 2C(t) [Alsin(w th)sinh(with) + A2 cos(w th)cosh(w1 th)
]

. -JUl th
- K(t) [A21 sin(w th) + A2 2 cos(w2 th)]e

, . -l 1 th
+ M(t) [A2 1 cos(w 2 th) - A22sin(* 2 th)]e }t21 2 22 2
00f A t At

1 f E(E)cos h d 2 2 - 28 l = tH3(t)
o al2 2 2 22 t 2 2
0 w 2

+ ( +t) + (--- t)

5 5
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{-2A(t) [A9cos(w th)sinh(w th) - A1 0 sin(w2 th)cosh(w th)]

-2C(t) [A9sin(w th)cosh(w 1th) + Al0cos(w th)sinh(w 1th)]

, , -l [th
+ K(t)[A 24cos(w 2th) + A25sin(w 2th)]e

+ M(t) [A2 4 sin(w 2th) - A2 5 cos(w 2th)]e }1lth

A19  A1 9

1 E(E)sin Sh d 5 2 5 tH(t)
2 2 2 2 24

o 1 "'2 2 2 w

+ (-- t) + ( +t)

5F55

(4.24)

From (4.21) and (4.24) and the integrals given in Appendix C

Hi(t) can be obtained in terms of 4(t), i.e.,

H l(t) 1 fA32cos[ w2 (h-n) t]
-a

-a

-w (h-)t

+ Asin[ w2 (h-n)t]}e 1  (n)dT)

_1 -al(h-n)t

H3 (t) - Is[2(h-)()d-a

4 a w2 cos[ 2 (h-r)t]H2(t) t
-a 1

Ssin[ w22 (h-n) t] e l((n)d (4.25)
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Solving (4.24) for A(t), C(t) and substituting into (4.22) we

obtain the following singular integral equation

a t)t a (1 - v v
1 tt -x + f e(x,t)p(t)dt = xy yx p(x)

-a -a 27Ey

Ixl < a (4.26)
subject to

a
f f(t)dt = 0

-a

where

o(xt) = J {1(x',)coS[ 2 (h-t) T]

27 o

+ 62 (x,)sin[ w2 (h-t)nl}e w (h-t)nd

e(x,) = () [g 5 ()g 9 (x,n) + g 7 (n)gl0(x,n)]

e2 (x,) = () [ ()g- 9 (x,n) + g 8 ()gl0(x,n)] (4.27)

go(n) = g l (n)g 4 (n) - g2() 93(T)

A a
40 41

91 0() - ---- cos(w 2nh) + [- sin(wr2h) + cos(w2 nh)]tanh(w lh)

A 4

924 1 cos(w2 h) + _ 40 tanh(w lih) + l]sin(wr2ih)

93 ( ) = - A4 4 cos(w2 nh) + [A tanh(w 1lh) - l]sin(w2 nh)

g 4 () = - A 4 5 cos(w2 rh) + [-A 44sin(w2 nh) + cos(w 2 nh)]tanh(wNlh)

(4.28)

S5 (n) = A5 2 91(n) + A5 3 92(I) + A5 5g 3(N) + A5 6 g 4 (I)

9 (n) = A58 gl(n) + A5 9 g 2 () + A6 1 g93() + A6 2 g 4 ()

97 () = A6 4 g 1 () + 6 5 g 2 (T) + A6 7 g 3(0) + A6 8 g4 (n)

g 8 (rl) = A7 0 91 (n) + A7 1 92(h) + A7 3 9 3 (T) + A7 4 g 4 ( TI) (4.29)
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sinh(w1 lx)
S(x,) = sin (wnx)

9 (x,) cosh(wlnh) 2x)

cosh (wflx)
910(xn) = cosh(wihc) cos(W2nx) (4.30)

Changing the variables

t = aT , x = aX

f(t) = #o(T) , p(x) = P (X)

0o(X,T) = a0(x,t)

(1 - v v)
r(X) =- 2 xy yx po(X) (4.31)

27Ey

we then have from (4.26)

1 o ( T )  1
T -i dT + 0 (XT)O0 (T)dT = r(X) , IXI < 1
-1 -1

1
f O(T)dT = 0 (4.32)
-1

Expressing the solution as in (4.15) we arrive at

N F(T.) 1
1 N [ 1 + 'e (Xi,T.)] = r(Xi) i= ,...N-1

k=l Tj- Xi o i

N
SE F(T.) = 0 (4.33)

k=1 N

where T. and Xi are defined by the equations (4.17).

5. STRESS INTENSITY FACTOR

Due to the symmetry Txyl(X,0) = 0, hence the stress intensity

factor will be defined by

K = lim /2(x-a) ayl(x,0) (5.1)
x-a
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5.1 For the Material of Type I

From the equation (4.9), the dominant part of cyl(x,0) which

contributes to the stress singularity at the crack tip can be

expressed as

a (x 20) t)dt + (x,0) (5.2)
yl x 0  7(1 - v v )-a t- x yl

xy yx -a

where from (4.15)

(t) aF(t/a) ei/ 2
-(t) = (5.3)

(t-a) 1/2 (t+a) 1/2

and acl(x,O) is a function which is bounded at the end points.

The behavior of the Cauchy Integral in (5.2) near the end

points x = ±a will be determined by following the method given by

Muskhelishvili [8]).

Hence, defining a sectionally holomorphic function

z) 1 t)dt (5.4)S() t- z
-a

from (5.3) and (5.4) we can write [8]

(z) = i/ F(-l)e' i / 2  a/2 F(1) + (z) (5.5)
(z+a) 1/2 (z-a) 1/2

Here, 0 (z) is bounded everywhere except the end points where

I0 (z)l < C a < 1/2
o z+a o

C and ao being real constants.

Hence from (5.1), (5.2), (5.4) and (5.5)

2y E20 a
K= - 20 y F(1) (5.6)

(1-32 v )
xy yx
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which is also the same at the tip x = -a. (5.6) can be derived

also by using a different approach (see Appendix D).

F(1) can be obtained in terms of F(T), j= l,...,n either by

an extrapolation or even better by using the formulas given in [11].

5.2 For the Material of Type II

In this case oyl(x,0) can similarly be found by replacing y20
in (5.2) by A27 [see (4.26)]. Hence,

K=- 27y F(1) (5.7)(1 - vxyV)
xy yx

6. DISCUSSION

From the point of view of the analysis, the important problem

is the one with nonzero crack surface tractions and vanishing

loads at infinity. The solution to the actual problem, with the

stress-free crack surfaces and the loads applied at infinity, can

be obtained by a simple superposition. Hence, in the following,

we will assume

cyl(X'0) = -p(x) =-Po = constant (6.1)

and plot K/Po0 /a vs. a/h for various material combinations.

Two different materials and their elastic constants will be

given below as examples of materials of Type I.
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Boron Epoxy

Ex = 3.5x106 psi, E = 3.24x107 psi

v = 0.23, G = 1.23xl06 psi
yx xy

and for the plane strain

E = 3.5xl0 6 psi, v = v = 0.23 (6.2)
z zx zy

Glass-Fiber (20% volume fraction)

Ex = 6.6x105 psi, E = 2.52x106 psi

v = 0.32, G = 2.9x105 psi
yx xy

and for the plane strain

E = 6.6x105 psi, v = v = 0.32 (6.3)
z zx zy

In Figure 1, the results in the case of generalized plane

stress are plotted for two material combinations consisting of

boron-epoxy and glass-fiber. As may be expected, the lower curve

illustrates the stiffening effect of a boron-epoxy matrix, result-

ing in possible crack arrest. Both curves tend to unity as a/h0O

which corresponds to the solution of an infinite orthotropic plate

with a crack. At the other end, as a/h i1, the effect of the

material dissimilarity becomes more apparent. If the crack propa-

gates and reaches the interfaces, then the resulting problem, for

which a= h, requires a separate treatment.

Figure 3, like Figure 2, illustrates the variation of K/po a

vs. a/h in the case of plane strain.

Similar curves are given in Figures 4, 5 and 6 for the
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materials of Type II. For this purpose the following materials

are chosen:

For Figures 4 and 5:

(I): E = 2x106 psi, E = 2.52x107 psi
x y

v = 0.20, G = 4x10 6 psi
yx xy

and for the plane strain

E = 2x10 6 psi, v = v = 0.20
z zx zy

(II): E = 2.40x106 psi, E = 8x106 psi
x y

V = 0.25, G = 3x106 psi
xy xy

and for the plane strain

E = 2.40x10 6 psi, v = = 0.25 (6.4)
z zx zy

For Figure 6:

(III): E = 2.40x106 psi, E = 8x106 psi

yx = 0.25, G =xy 3xl06 psi

(IV) : E = 1.5x106 psi, E = 4x107 psi
x Y

= 0.20, Gxy = 4x106 psi (6.5)
yx xy

The discussion of these curves can be made similarly.
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APPENDIX A

It can be shown that sl and s2 as defined by (3.4) are either

real or complex conjugates. Hence, two possibilities exist:

1 - Material of type I:

S1 = W1' s2 = 3 W2 = W4 = 0 (A-1)

from which it follows that

86' 7' 8' 89' 810 are real

2 - Material of type II:

s= 1 + iw 2

s2 = el - iW2 = S'l l =3' 2 =-W4 (A-2)

from which we obtain

8 7' 810 =  9' 6 = pure imaginary (A-3)

In the case of generalized plane stress from (2.20) and (2.17)

we have

E E
x y

1 G (1 -v2 G (1 - v v
xy xy yx xy xy yx)

v E

+yx x (A-4)
3 G (1-v v )xy xy yx

Hence from (3.4) and (A-4)

E E
= 2v y 5 y (A-5)

4 yx G 5 E
xy x

Therefore the equation to determine sl and s2 takes the form [see

(3.4)]
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s - j 2v )s = 0 (A-6)
E G xy E

or by change of variables

1 (A-7)
s

we have

)4 + 2 2 x - 0 (A-8)
G xy 2vxy Exy y

It has been proved by Lekhnitskii [6] and [12] that equation

(A-8) has no real roots. The possible roots are

a) pV1  6 1 12 
= 6 2 ' 1i' 12  or

b) p1 = 63 + 64i ' V2 
= -63 + - 4 i I' '1 ' 2  (A-9)

Hence from (A-7) and (A-9) we conclude that the roots in terms

of s are

a) sI , -sl,  s2 ,  -s2 all being real, or

b) s I , -s i , Sl' -Sl Sl = complex (A-10)

Hence the propositions in (A-1) and (A-2) are proved.

In the case of plane strain the same results are obtained [6],

[12].

39



APPENDIX B

B.1 Material Type I:

Dimensionless bielastic constants yi:

1 + yx 19 2 + yx 310

5 5

Y3 (= 1 + yx 7 ' 4 = 3 + yx 8

wl9 3 10

5 = )xy +  ' 6 = xy +

5 5

Y7 = -xyl 1 + 8 7 , = xy + 3 88

*9 = 1 + l 7 10 = -1 + *38

79 = -1 + w1 7  Y0 = -1 + 3 8

I Il I 31
11 + 89sign(w ) '12 + 1 0 sign(w 3)

** * * in* * * *

713 = - Iw - vyx87sign(w) 14 = - Iw31- vyx 88sign(3 )

* * I * g ** * * *

15 = - l - 7sign() , 16 = - vxyl - 8 sign(w 3)

E 1 - v G
x xy yx xy

717 = E * * ' 18 G
x 1 -v v xyxy yx

11
719 s= ign(w 39 yl sign( 3 10

5 (6 12
Y20 2y 1 9

721 = sign(wl) 7 - sign(w 3) 8

40



22 = 1 + sign(w3)

+17 * *
Y2 3 = Y3 + , 87(14 - 13

,s * * * 1 7Y13
Y2 4 = Y2 2 Y1 7 1 4 - sign( 3 ) 8 Y 1

Y1 7  * *

-25 4 - 4 Y* 8(Y1 4 - 1 3)

Y189 * * *
Y2 6 = - 9- Y~i sign(w3 ) 8 + *18 10 22

10 - 9
27 = Y1 88 7 ( Y

Y18Y 9 . * **
Y2 8  - 10 Y sign( 3)8 8 + 181022

2 1

T10 - Y9

Y29 = Y188 8 ( Y 1

Y17 * * ,
30 = [ (Y1 3 - 1 4 ) 8 sign (

3 )- 1 4 Y 2 1 ] = -Y24

Y1 7  * *
Y3 1 = - (14 - 13

Y18 * *,
Y32 = [( 9 1- y 1 0 ) 8 sign(w3 ) - 1 0 21]

Y29 1

Y33 = 3 4 = 3 0 + Y 3 1 9 sign(l)
8 IWl

711 235 [30 + 3110sign( 23)

1 2  3110 w 3
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+ 33 9Sign(w) + 11 5
36 = Y32 33 9si- ( +

11  T12 i 5
Y3 7  y [Y32 + Y3 3 10 sign(w 3) +12 Iw3f

Y38 = Y3625 - Y34Y29 ' Y39 = Y36Y24 - Y34Y28

Y40 = Y34Y27 - Y36Y23 ' Y41 = Y34Y26 - Y36Y24

Y42 3529 - Y37Y25 ' Y43 Y35Y28 - Y37Y24

Y44 Y37Y23 - Y35Y27 Y45 = Y37Y25 - Y35Y26

B.2 Material Type II:

Dimensionless bielastic constants Ai:

7 = 7 + i7 89 = 89 + i9

7 =7 + i 8 89 + i 9

A1 = 1 vyx7 ' 2 =  2 + vyx 7

A2 = 2 + yx7 ' 3 = 1 + (-W2 9 + w 9 )
yx7

A4 yx ( 2 sign(wl)4 + 1w1189)

* * * * i "
A6 =2 vxy + 7 xy + -- (-2 9 + w19)

4  " '
8 - 9 = -1 - w287 + w17

yx

A9 = -1 - 287 + w07
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l0 = 27 + 187 ' 11 89

S'1

A132 = + 9 sign(w)

AI3 = vl yx 7 sign(al

A14 = xylll + 87 sign(w

* * *1 * * *"

A6 = - 89sign(wl) + l 9

AA 2
A7 = 9 + i sign(l)

A11 11

A 2

18 4  A 3  A 19 11 A 1

E (1 - v )
A x xy yx A A A
20 E * * '21 202

x (1 - v v)
xy yx

* G
A A xy

22 20 13 ' 23 Gxy

24 23 9 25 23 15

A + 12 1 A26
26 7 8 A 27 -2 16

12 A 1 w A 12

28 ='1' 2 1 1w + 2 1

A1 2  1 A3 0 v/p5

3 0 = 5 3 1  2 A1 6
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A3 2 = A ' 33 = 2 A16 - wll 1 7
30 1 1

1 A16A - (A -2 A1 6
34 5  W33 2 1 6 ) ' 3 5

5 5

A 2  A3 4  A A 8 _ 5
36 l +  35 37 2 16

1 A1 9 1wll *" *' *A = -f ___ ' A
38 2 ' 3 9  2 2 7  2 1 7 sign( 1 )

2 ( *" 2 " *")
40 A 2 1 7  1 7 41 (A2 1 7  2 7

2 = *

42 [A2 2 7  A27 sign(wl)]
39

43 = - [A2 2 7 -

44 = - 4024 9 25 42
10

1 (A2 4 -A) A 2 5 A4 ]

A4 5  210 [A4 1 2 4  9  2 5 A4 3

A9  1
46 210 ' 47 2A 0 A3 9 [( 2 4  2 1  25 22

10 3910 39
[ 87 (a _ A ) + A sign(48 2A10T39 25 7 1

7 A21

4 9  - 2 3 9 ' 50  2A39

A38 2
A5 1  2A 3 1 A3 2 A4 6  A10 l A47

A5 2 = 5 1 A5 , A5 3  51 6

54 = 3132 + A50 55 A54 5
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A56 = 54 6

3 8
A =A + A + -A A
57= 2(31 46 37 48 10 36 47

58 57 5  59 57 6

60 31 A3 6 A5 0 - 2A 3 7 A4 9

61 60 5 ' 6 2 = 60 6

A38 w2
63 2A3 1 3 2 4 6  47 A10 w1

64 63 6 ' 65 63 5

66 31 32 50

67 66 6 68 66 5

38
= 2(A A + A3 7 A4 8 ) + A3 8  A36

6 9  2( 31 4 6  37 4836 47

A7 0 = 69 6 ' 71 - 69 5

72 31 A36 50 + 2A 4 9 37

673 72 6  74 72
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APPENDIX C

Calculation of certain integrals.

From [9] we have

f e-atsinbtdt = b a> 02 2 '
o a +b

0o

fe-at cos btdt = 2 a , a> 0 (C-l)
o a +b

f sin(ax)dx = e0 sin(ay)
2 2 2 2 8o L + (y-x) + (y+x)

a> 0, Re() > 0, (y+iB) is not real

f F + cos(ax)dx = -a e cos(ay)
2 2 2 2 o + (Y-x) + (y+x) 2

a> 0, Imyl < Re(8)

and by properly differentiating with respect to a

f x x cos(ax)dx
o 2 + (-x)2 2 + (y+x)2

S e-a [-sin(ay) + ycos(ay)]

S+ (-x) 2  2 + x sin(ax)dx
o + (Y-x) B + (y+x)

= e-aB[ysin(ay) + acos(ay)] (C-2)

Special Cases.

o 1 7 -aS
S2 2 sinos(ax)dx = ea

S sin(ax)dx = T 4 e-a6
2 2 + x
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21 2 sin (ax) dx = 2 (1 - e - pa) (C-3)
o x(U +x ) 2 2

b (c + d 2 ) 2bd b

a + b/ f2t2 ft f 2 t 2

2 2 2 2
c2 + (d+ ft) 2 c 2 + (d +ft) 2
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APPENDIX D

Derivation of the Stress Intensity Factor Expression:

From (5.2) and (5.3) we have

= 20Ey I F(T) dT + o (aX,0) (D-1)ayl(aXO) r(1 - V xyyx) -X yl
xy yx -1 1- X

where x = aX, t = aT.

Expanding F(T) into a series of Chebyshev polynomials

F(T) = Z CjTj(T) (D-2)
j=0

and substituting into (D-l), with the use of the formula [13]

1. T dt rU j 1(X) , XI< 1
1T (T) dT 3

-1 J1- 2 - X [/-r - x]3 XI > 1 (D-3)

(-1)j+l pX

for IXI > 1, we obtain

2y E O

ayl(aX,0) = 2y 2 ~E C. 1X la- xX,)

(1 - vxyVyx) /X-- j=0 J ()+

XI > 1 (D-4)

Hence

2y20E Y m0

K = lim /2(x-a) Oyl(x,0) = (1 - v ) C. (D-5)

x-a xy yx j=0

But from (D-2)

F(1) = C.T (1) = C. (D-6)

j=0  j j=0

Hence, we finally obtain

2yE
K 20 y F(1) (D-7)

(1 - v )
xy yx
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Figure 1. Geometry of the Problem
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Material of Type I , Plane Strain
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Material of Type II, Plane Strain
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